Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Cell Rep ; 43(4): 114068, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38614085

RESUMO

The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.


Assuntos
Encéfalo , Camundongos Knockout , Penetrância , Inativação do Cromossomo X , Inativação do Cromossomo X/genética , Animais , Feminino , Camundongos , Encéfalo/metabolismo , Masculino , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Comportamento Animal , Camundongos Endogâmicos C57BL , Mosaicismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia
2.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38458200

RESUMO

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Feminino , Camundongos , Masculino , Animais , Inativação do Cromossomo X/genética , Impressão Genômica , Células Germinativas , Epigênese Genética , Embrião de Mamíferos , RNA Longo não Codificante/genética , Cromossomo X/genética , Mamíferos/genética
3.
Cell Mol Life Sci ; 81(1): 156, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551746

RESUMO

X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Humanos , Masculino , Animais , Coelhos , Feminino , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , Cromossomos Humanos X , Cromossomo X/genética , Éxons/genética
4.
J Neurodev Disord ; 16(1): 5, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424476

RESUMO

X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Gravidez , Cromossomos Humanos X , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/genética , Mosaicismo , Inativação do Cromossomo X/genética
5.
Nat Rev Mol Cell Biol ; 25(5): 396-415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242953

RESUMO

Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.


Assuntos
Regulação da Expressão Gênica , RNA Longo não Codificante , Transcrição Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Animais , Transcrição Gênica/genética , Regulação da Expressão Gênica/genética , Inativação do Cromossomo X/genética
6.
Yi Chuan ; 46(1): 18-33, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230454

RESUMO

X chromosome inactivation can balance the effects of the two X chromosomes in females, and emerging evidence indicates that numerous genes on the inactivated X chromosome have the potential to evade inactivation. The mechanisms of escape include modification of DNA, RNA, histone, epitope, and various regulatory proteins, as well as the spatial structure of chromatin. The study of X chromosome inactivation escape has paved the way for investigating sex dimorphism in human diseases, particularly autoimmune diseases. It has been demonstrated that the presence of TLR7, CD40L, IRAK-1, CXCR3, and CXorf21 significantly contributes to the prevalence of SLE (systemic lupus erythematosus) in females. This article mainly reviews the molecular mechanisms underlying these genes that escape from X-chromosome inactivation and sexual dimorphism of systemic lupus erythematosus. Therefore, elucidating the molecular mechanisms underlying sexual dimorphism in SLE is not only crucial for diagnosing and treating the disease, but also holds theoretical significance in comprehensively understanding the development and regulatory mechanisms of the human immune system.


Assuntos
Lúpus Eritematoso Sistêmico , Inativação do Cromossomo X , Feminino , Humanos , Inativação do Cromossomo X/genética , Caracteres Sexuais , Lúpus Eritematoso Sistêmico/genética , Cromossomos Humanos X/genética , Sistema Imunitário
7.
Sci Rep ; 14(1): 440, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172222

RESUMO

Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene, and female carriers are usually asymptomatic. We describe a 7-month-old female patient with severe intellectual disability, epilepsy, and low levels of serum copper and ceruloplasmin. While heterozygous deletion of exons 16 and 17 of the ATP7A gene was detected in the proband, her mother, and her grandmother, only the proband suffered from Menkes disease clinically. Intriguingly, X chromosome inactivation (XCI) analysis demonstrated that the grandmother and the mother showed skewing of XCI toward the allele with the ATP7A deletion and that the proband had extremely skewed XCI toward the normal allele, resulting in exclusive expression of the pathogenic ATP7A mRNA transcripts. Expression bias analysis and recombination mapping of the X chromosome by the combination of whole genome and RNA sequencing demonstrated that meiotic recombination occurred at Xp21-p22 and Xq26-q28. Assuming that a genetic factor on the X chromosome enhanced or suppressed XCI of its allele, the factor must be on either of the two distal regions derived from her grandfather. Although we were unable to fully uncover the molecular mechanism, we concluded that unfavorable switching of skewed XCI caused Menkes disease in the proband.


Assuntos
Síndrome dos Cabelos Torcidos , Humanos , Lactente , Feminino , Síndrome dos Cabelos Torcidos/genética , Inativação do Cromossomo X/genética , Cobre/metabolismo , Cromossomos Humanos X/genética , Mutação
8.
RNA ; 30(3): 240-255, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164599

RESUMO

XIST noncoding RNA promotes the initiation of X chromosome silencing by recruiting the protein SPEN to one X chromosome in female mammals. The SPEN protein is also called SHARP (SMRT and HDAC-associated repressor protein) and MINT (Msx-2 interacting nuclear target) in humans. SPEN recruits N-CoR2 and HDAC3 to initiate histone deacetylation on the X chromosome, leading to the formation of repressive chromatin marks and silencing gene expression. We dissected the contributions of different RNA and protein regions to the formation of a human XIST-SPEN complex in vitro and identified novel sequence and structure determinants that may contribute to X chromosome silencing initiation. Binding of SPEN to XIST RNA requires RRM 4 of the protein, in contrast to the requirement of RRM 3 and RRM 4 for specific binding to SRA RNA. Measurements of SPEN binding to full-length, dimeric, trimeric, or other truncated versions of the A-repeat region revealed that high-affinity binding of XIST to SPEN in vitro requires a minimum of four A-repeat segments. SPEN binding to XIST A-repeat RNA changes the accessibility of the RNA at specific nucleotide sequences, as indicated by changes in RNA reactivity through chemical structure probing. Based on computational modeling, we found that inter-repeat duplexes formed by multiple A-repeats can present an unpaired adenosine in the context of a double-stranded region of RNA. The presence of this specific combination of sequence and structural motifs correlates with high-affinity SPEN binding in vitro. These data provide new information on the molecular basis of the XIST and SPEN interaction.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Cromatina , Proteínas de Ligação a DNA/genética , Inativação Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
9.
Clin Genet ; 105(2): 173-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899624

RESUMO

Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.


Assuntos
Deficiência Intelectual , Humanos , Feminino , Deficiência Intelectual/genética , Genes Ligados ao Cromossomo X/genética , Duplicação Gênica , Inativação do Cromossomo X/genética , Mutação
11.
Rev Neurosci ; 35(3): 341-354, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157427

RESUMO

Sex differences exist in the onset and progression of Alzheimer's disease. Globally, women have a higher prevalence, while men with Alzheimer's disease experience earlier mortality and more pronounced cognitive decline than women. The cause of sex differences in Alzheimer's disease remains unclear. Accumulating evidence suggests the potential role of X-linked genetic factors in the sex difference of Alzheimer's disease (AD). During embryogenesis, a remarkable process known as X-chromosome inactivation (XCI) occurs in females, leading to one of the X chromosomes undergoing transcriptional inactivation, which balances the effects of two X chromosomes in females. Nevertheless, certain genes exceptionally escape from XCI, which provides a basis for dual expression dosage of specific genes in females. Based on recent research findings, we explore key escape genes and their potential therapeutic use associated with Alzheimer's disease. Also, we discuss their possible role in driving the sex differences in Alzheimer's disease. This will provide new perspectives for precision medicine and gender-specific treatment of AD.


Assuntos
Doença de Alzheimer , Cromossomos Humanos X , Feminino , Humanos , Masculino , Cromossomos Humanos X/genética , Caracteres Sexuais , Doença de Alzheimer/genética , Inativação do Cromossomo X/genética , Genes Ligados ao Cromossomo X
12.
Proc Natl Acad Sci U S A ; 120(52): e2313200120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113263

RESUMO

In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Feminino , Camundongos , Embrião de Mamíferos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
13.
Stem Cell Res Ther ; 14(1): 376, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124119

RESUMO

BACKGROUND: A 45,X monosomy (Turner syndrome, TS) is the only chromosome haploinsufficiency compatible with life. Nevertheless, the surviving TS patients still suffer from increased morbidity and mortality, with around one-third of them subjecting to heart abnormalities. How loss of one X chromosome drive these conditions remains largely unknown. METHODS: Here, we have generated cardiomyocytes (CMs) from wild-type and TS patient-specific induced pluripotent stem cells and profiled the mRNA, lncRNA and circRNA expression in these cells. RESULTS: We observed lower beating frequencies and higher mitochondrial DNA copies per nucleus in TS-CMs. Moreover, we have identified a global transcriptome dysregulation of both coding and non-coding RNAs in TS-CMs. The differentially expressed mRNAs were enriched of heart development genes. Further competing endogenous RNA network analysis revealed putative regulatory circuit of autosomal genes relevant with mitochondrial respiratory chain and heart development, such as COQ10A, RARB and WNT2, mediated by X-inactivation escaping lnc/circRNAs, such as lnc-KDM5C-4:1, hsa_circ_0090421 and hsa_circ_0090392. The aberrant expressions of these genes in TS-CMs were verified by qPCR. Further knockdown of lnc-KDM5C-4:1 in wild-type CMs exhibited significantly reduced beating frequencies. CONCLUSIONS: Our study has revealed a genomewide ripple effect of X chromosome halpoinsufficiency at post-transcriptional level and provided insights into the molecular mechanisms underlying heart abnormalities in TS patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Turner , Humanos , RNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , 60414 , Síndrome de Turner/genética , Inativação do Cromossomo X/genética , Miócitos Cardíacos/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Cromossomos/metabolismo , RNA não Traduzido
14.
Nat Protoc ; 18(12): 3881-3917, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914783

RESUMO

Human pluripotent stem cells (hPSCs) hold a central role in studying human development, in disease modeling and in regenerative medicine. These cells not only acquire genetic modifications when kept in culture, but they may also harbor epigenetic aberrations, mainly involving parental imprinting and X-chromosome inactivation. Here we present a detailed bioinformatic protocol for detecting such aberrations using RNA sequencing data. We provide a pipeline designed to process and analyze RNA sequencing data for the identification of abnormal biallelic expression of imprinted genes, and thus detect loss of imprinting. Furthermore, we show how to differentiate among X-chromosome inactivation, full activation and aberrant erosion of X chromosome in female hPSCs. In addition to providing bioinformatic tools, we discuss the impact of such epigenetic variations in hPSCs on their utility for various purposes. This pipeline can be used by any user with basic understanding of the Linux command line. It is available on GitHub as a software container ( https://github.com/Gal-Keshet/EpiTyping ) and produces reliable results in 1-4 d.


Assuntos
Metilação de DNA , Impressão Genômica , Humanos , Feminino , RNA-Seq , Inativação do Cromossomo X/genética , Cromossomos
15.
Bioessays ; 45(12): e2100164, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37941456

RESUMO

The creeping vole Microtus oregoni exhibits remarkably transformed sex chromosome biology, with complete chromosome drive/drag, X-Y fusions, sex reversed X complements, biased X inactivation, and X chromosome degradation. Beginning with a selfish X chromosome, I propose a series of adaptations leading to this system, each compensating for deleterious consequences of the preceding adaptation: (1) YY embryonic inviability favored evolution of a selfish feminizing X chromosome; (2) the consequent Y chromosome transmission disadvantage favored X-Y fusion ("XP "); (3) Xist-based silencing of Y-derived XP genes favored a second X-Y fusion ("XM "); (4) X chromosome dosage-related costs in XP XM males favored the evolution of XM loss during spermatogenesis; (5) X chromosomal dosage-related costs in XM 0 females favored the evolution of XM drive during oogenesis; and (6) degradation of the non-recombining XP favored the evolution of biased X chromosome inactivation. I discuss recurrent rodent sex chromosome transformation, and selfish genes as a constructive force in evolution.


Assuntos
Cromossomos Sexuais , Cromossomo X , Masculino , Feminino , Animais , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética , Inativação do Cromossomo X/genética , Arvicolinae/genética
16.
Development ; 150(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997921

RESUMO

The last edition of the X-chromosome inactivation (XCI) meeting was held as an EMBO workshop in Berlin on 19-22 June 2023. The conference took place at the Harnack-haus in the Dahlem district, birthplace of the first modern research campus, where notable scientists such as Lise Meitner, Hans Krebs and, briefly, Albert Einstein conducted their research. This special edition, also accessible online, was organized by Rafael Galupa (Centre for Integrative Biology of Toulouse, France), Joost Gribnau (Erasmus MC Rotterdam, The Netherlands), Claire Rougeulle (Université Paris Cité/CNRS, Epigenetics and Cell Fate Center, Paris, France), Edda Schulz (Max Planck Institute for Molecular Genetics, Berlin, Germany) and James Turner (The Francis Crick Institute, London, UK). Originally scheduled for 2021, to commemorate the 60th anniversary of Mary Lyon's hypothesis on X-chromosome inactivation in mammals and the 30th anniversary of XIST/Xist discovery, the meeting had to be postponed because of the COVID-19 pandemic. Seven years after the latest XCI meeting in London, the enthusiasm and expectations of the community were at their highest, bringing together over 160 scientists from around the world to share and discuss their research. Eighty posters and more than 40 talks were presented at this event, in a collegial and collaborative atmosphere. A historical session and several breakout discussions were also organized, as well as the now traditional boat trip, all thanks to great organization. Here, we debrief readers on this fantastic conference.


Assuntos
Pandemias , RNA Longo não Codificante , Animais , Humanos , Inativação do Cromossomo X/genética , Epigênese Genética , Mamíferos/genética , Cromossomos , RNA Longo não Codificante/genética , Cromossomo X
17.
Nat Cell Biol ; 25(11): 1704-1715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932452

RESUMO

X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.


Assuntos
Fatores de Transcrição GATA , RNA Longo não Codificante , Animais , Feminino , Camundongos , Fertilização/genética , Fatores de Transcrição GATA/genética , Mamíferos , RNA Longo não Codificante/genética , Regulação para Cima , Cromossomo X , Inativação do Cromossomo X/genética
18.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37991053

RESUMO

In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Masculino , Animais , Feminino , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , Cromossomo X/genética , Cromatina/genética , Compensação de Dosagem (Genética) , Mamíferos/genética
20.
Curr Opin Genet Dev ; 82: 102096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597506

RESUMO

Stem-cell-based embryo models generate much excitement as they offer a window into an early phase of human development that has remained largely inaccessible to scientific investigation. An important epigenetic phenomenon during early embryogenesis is the epigenetic silencing of one of the two X chromosomes in female embryos, which ensures an equal output of X-linked gene expression between the sexes. X-chromosome inactivation (XCI) is thought to be established within the first three weeks of human development, although the inactive X-chromosome is reactivated in primordial germ cells (PGCs) that migrate to the embryonic gonads. Here, we summarize our current understanding of X-chromosome dynamics during human development and comment on the potential of recently established stem-cell-based models to reveal the underlying mechanisms.


Assuntos
Inativação do Cromossomo X , Cromossomo X , Humanos , Feminino , Inativação do Cromossomo X/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...